
The Single-Vector Compression Storage Research for Uniform Adjacent Block
Diagonal Matrix

Hou Yongyan1,a ,Ren Zhiguo2,b

1. Zhixing College, Northwest Normal University, Lanzhou, China
2. School of Electronics and Information Engineering, Lanzhou City University, Lanzhou, China

a.498264224@qq.com b.ren_zhiguo@qq.com

Keywords: Compression storage, uniform adjacent block diagonal matrix, the row priority single-
vector compression storage, the column priority single-vector compression storage

Abstract: Matrix is a mathematical object. We are not interested in data itself in the data structure,
but how to store the elements in the matrix, so that various operations can be performed effectively.
We often use a two-dimensional array to store the elements in the matrix sequentially. If adopt this
method of storage, when there is large number of zero elements and have regular distribution a
particular element will consume large amounts of storage unit. For high order matrix, the storage
method is not only waste storage unit, but also takes a lot of time for invalid computation, it is
obviously not desirable. In order to save the storage space, we need to compress storage for such
matrix. The main purpose of the compressed storage is to make more of the same nonzero elements
share the same storage unit according to the distribution of matrix element, while the zero elements
don't allocate storage space. In this paper, we studied the row priority single-vector compressed
storage and the column priority single-vector compressed storage of the uniform adjacent block
diagonal matrix, and obtained the corresponding storage address mapping function, so as to help the
scientific research worker.

1. Introduction
Matrix is a mathematical object, commonly used in scientific computing and engineering

calculation. We are not interested in data itself in the data structure, but how to store the elements in
the matrix, and make the various operations can run effectively. When programming in a high-level
language, often use a two-dimensional array to store the elements in the matrix sequentially. If
adopt this method of storage, we can random access each data element, and thus can easily realize
operations of the matrix. But, when there is large number of zero elements in the matrix and have
regular distribution, if still use a two-dimensional array to store the matrix, a particular element will
consume a large of storage unit. For high order matrix, the storage method is not only waste storage
unit, but also takes a lot of time for Invalid computation, it is obviously not desirable. In order to
save the storage space, we need to compress storage for such matrix. The main purpose of the
compressed storage is to make more of the same nonzero elements share the same storage unit
according to the distribution of matrix element, while the zero elements don't allocate storage space.
In this paper, we studied the uniform adjacent block diagonal matrix, and obtained the
corresponding storage address mapping functions. The tags and terms used in the paper please
reference [1-6].

In recent years, relevant research has produced some new results [7-16]. In this paper, we studied
the uniform adjacent block diagonal matrix, and obtained the row priority single-vector
compression storage address functions of uniform adjacent block diagonal matrix, and also obtained
the column priority single-vector compression storage address functions of uniform adjacent block
diagonal matrix for the first time, so as to help the scientific research workers.

2019 8th International Conference on Advanced Materials and Computer Science (ICAMCS 2019)

Published by CSP © 2019 the Authors 383

2. The definition of uniform adjacent block diagonal matrix
This type of special matrix is often encountered in engineering calculations, as shown in Figure 1.

If an n-order square matrix A satisfies the following conditions, it is called a uniform adjacent block
diagonal matrix:

1) Matrix A is an n-order square matrix.
2) m is a positive integer, where m represents the order in the adjacency sub-matrix Λ in square

A. The adjacency sub-matrix: The bottom-right corner element of the i-th adjacency sub-matrix is
the top-leftmost element of the i+1th adjacency sub-matrix, and they share one element. The range
of i is: 1≤i＜(n-1)/(m-1)

3) Each adjacent sub-matrixΛ is a square matrix with m2 elements. The main diagonal of each
adjacent sub-matrixΛ is on the main diagonal of matrix A.

4) When m=2, uniformly adjacent block diagonal matrix can also be considered as a banded
matrix, n is a positive integer greater than 3.When m>2, m and n need to satisfy the relation:(n-1)
mod (m-1)=0

5) When r=(n-1)/(m-1), The sum of the elements in all adjacent submatrices is (m2-1)×r+1. In
addition to the (m2-1)×r+1 elements in the adjacency sub-matrix, the remaining elements in matrix
A are all zero or the same constant

The 6-order uniform block diagonal matrix and sub-matrix of m=2, as shown in figure 1.
11 12

21 22 23

32 33 34

43 44 45

54 55 56

65 66

11 12 22 23

1 2

21 22 32 33

33 34 44 45

3 4

43 44 54 55

55 56

5

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

a a

a a

a

a a

a a a

a a a
A

a a a

a a a

a a

a a

a a a a

a a

a a a a

a

 
 
 
 
 =
 
 
 
 
  
   

Λ = Λ =   
      
   

Λ = Λ =   
      

Λ =
65 66

a a

 
 
  

Fig.1. 6 order uniform adjacent block diagonal matrix and sub-matrix of m=2

3. The row priority single-vector compression storage of uniform adjacent block diagonal
matrix.

If the data elements of a uniform block diagonal matrix are compressed and stored in a single-
vector storage space B, the size of the single-vector B is (m2-1)×r+1.

If the row priority storage is used for these r sub-matrices----when compressing and storing, the
top-leftmost sub-matrix in square matrix A is stored at first and the sub-matrix at the lower right
corner of the square A is stored at last. When storing each sub-matrix, the elements of the first row
are stored first and the elements of the last row are stored last. For the elements in each row, the first
element is stored at first, then store the second one... Finally, the last element in this row is stored.

Then, when n=6, m=2, r=(n-1)/(m-1)=5, the uniform adjacent block diagonal matrix A can be
compressed and stored in a single-vector storage space B.

The size of B can be obtained by calculation, it is (m2-1) ×r+1=(22-1) ×5+1=16.As shown in
figure 2.

384

11 12

21 22 23

32 33 34

43 44 45

54 55 56

65 66

11 12 21 22 23 32 33 34

43 44 4̀5 54 55 56 65 66

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

0 1 2 3 4 5 6 7
B=

8 9 10 11 12 13 14 15

a a

a a a

a a a
A

a a a

a a a

a a

a a a a a a a a

a a a a a a a a

 
 
 
 
 =
 
 
 
 
  









Fig. 2. The results of compression storage at n=6,m=2,r=5

For a data element ai,j in the uniform adjacent block diagonal matrix A, it can be compressed
storage into the single direction storage space B, if the element ai,j in A corresponding element is bk.
It can be seen that k is a function of (i,j,m), k is a function that can be computed:

 k=f (i,j,m)=(i-1)*2+(j-1) (1-1)
When i=5,j=6 can be calculated to be k=(i-1)*2+(j-1)=(5-1)*2+(6-1)=13.You can see that the

element a5,6 in the matrix A is just in the position b13 in the single-vector B. So the conclusion 1-1 is
true.

When n=5, m=3, r=(n-1)/(m-1)=2, the corresponding uniform adjacent block diagonal matrix A
can be compressed storage into a single-vector storage space B.

The size of B can be obtained by calculation, it is (m2-1) ×r+1=(32-1) ×2+1=17.
As shown in figure 3.

11 12 13

21 22 23

31 32 33 34 35

43 44 45

53 54 55

11 12 13 21 22 23 31 32 33

34 35 43 44 45 53 54 55

0 0

0 0

0 0

0 0

0 1 2 3 4 5 6 7 8
B=

9 10 11 12 13 14 15 16

a a a

a a a

A a a a a a

a a a

a a a

a a a a a a a a a

a a a a a a a a

 
 
 
 =  
 
 
  









Fig.3. The results of compression storage at n=5, m=3,r=2

For a data element ai,j in the uniform adjacent block diagonal matrix A, it can be compressed
storage into the single direction storage space B, if the element ai,j in A corresponding element is bk.
It can be seen that k is a function of (i,j,m), k is a function that can be computed:

 k=f (i,j,m)=(i-1)*3+(j-1) (1-2)
When i=5,j=4 can be calculated to be k=(i-1)*3+(j-1)=(5-1)*3+(4-1)=15.You can see that the

element a5,4 in the matrix A is just in the position b15 in the single-vector B. So the conclusion 1-2 is
true.

Similarly, when n=7, m=4, r=(n-1)/(m-1)=2, the corresponding uniform adjacent block diagonal
matrix A can be compressed into a single-vector storage space B.

The size of B can be obtained by calculation, it is (m2-1) ×r+1=(42-1) ×2+1=31.
As shown in figure 4.
For a data element ai,j in the uniform adjacent block diagonal matrix A, it can be compressed

storage into the single direction storage space B, if the element ai,j in A corresponding element is bk.
It can be seen that k is a function of (i,j,m), k is a function that can be computed:

385

 k=f (i,j,m)=(i-1)*4+(j-1) (1-3)
When i=7,j=6 can be calculated to be k=(i-1)*4+(j-1)=(7-1)*4+(6-1)=29.You can see that the

element a7,6 in the matrix A is just in the position b29 in the single-vector B. So the conclusion 1-3 is
true.

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44 45 46 47

54 55 56 57

64 65 66 67

74 75 76 77

11 12 13 14 74 75 76 77

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

...
B=

0 1 2 3 ... 27 28 29 30

a a a a

a a a a

a a a a

A a a a a a a a

a a a a

a a a a

a a a a

a a a a a a a a

 
 
 
 
 
 =
 
 
 
 
 
 

Fig.4. The results of compression storage at n=7, m=4,r=2

In summary, for a data element ai,j in a uniform adjacent block diagonal matrix A, it compressed
storage into the single direction storage space B, if the element ai,j in A corresponding element is bk.
It can be seen that k is a function of (i,j,m).

When m=2, k is a function of (i,j,m) , formula1-1 was obtained k=(i-1)×2+(j-1).When m=3, k is
a function of (i,j,m) , formula1-2 was obtained k=(i-1)×3+(j-1).When m=4, k is a function of (i,j,m) ,
formula1-3 was obtained k=(i-1)×4+(j-1).

In a uniform adjacent block diagonal matrix A, each sub-block matrix is an m-order matrix. In
addition to the elements of the sub-matrix on the diagonal, the rest are some constants. The element
ai,j in the sub-matrix is stored into a single direction B now. It has stored i-1 complete row’s
elements before the element ai,j, obviously. So the elements number is m×(i-1). The number of
elements at this column (j column) before ai,j is (j-1).

Therefore, when the elements in the matrix A are stored in a single-vector, k is a function of
(i,j,m): k=(i-1)×m+(j -1).

Then the row priority address mapping function of the uniform adjacent block diagonal matrix
we can be obtained. (formula 1):

k= f (i,j,m)= (i-1)×m+(j -1) (1)

4. The Column priority single-vector compression storage of uniform Adjacent block diagonal
matrix.

If the column priority storage is used for these r sub-matrices---- when compressing and storing,
the top-leftmost sub-matrix in square matrix A is stored at first and the sub-matrix at the lower right
corner of the square A is stored at last.

When storing each sub-matrix, the elements of the first column are stored first and the elements
of the last column are stored last. For the elements in each column, the first element is stored at first,
then store the second one... Finally, the last element in this column is stored.

Then, when n=6, m=2, the corresponding uniform adjacent block diagonal matrix A can be
compressed and stored in the single-vector storage space B. As shown in figure 5.

Similar to row priority compressed storage, in column priority storage, for a data element ai,j in
uniform adjacent block diagonal matrix A, it compressed storage into the single-vector storage
space B, if the element ai,j in A corresponding element is bk. It can be seen that k is a function of
(i,j,m), k is a function that can be computed:

k=f (i,j,m)=(j-1)×2+(i-1) (2)

386

11 12

21 22 23

32 33 34

43 44 45

54 55 56

65 66

11 21 12 22 32 23 33 43

34 44 5̀4 45 55 65 56 66

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

0 1 2 3 4 5 6 7
B=

8 9 10 11 12 13 14 15

a a

a a a

a a a
A

a a a

a a a

a a

a a a a a a a a

a a a a a a a a

 
 
 
 
 =
 
 
 
 
  









Fig. 5. The results of compression storage at n=6,m=2 and r=5

So when n=6 and m=3, the corresponding uniform block diagonal matrix A can be compressed
into a single vector storage space B. As shown in figure 6.

11 12 13

21 22 23

31 32 33 34 35

43 44 45

53 54 55

11 21 31 12 22 32 13 23 33

43 53 34 44 54 35 45 55

0 0

0 0

0 0

0 0

0 1 2 3 4 5 6 7 8
B=

9 10 11 12 13 14 15 16

a a a

a a a

A a a a a a

a a a

a a a

a a a a a a a a a

a a a a a a a a

 
 
 
 =  
 
 
  









Fig. 6. The results of compression storage at n=6, m=3 and r=2

For a data element ai,j in the uniform adjacent block diagonal matrix A, it can be compressed
storage into the single direction storage space B, if the element ai,j in A corresponding element is bk.
It can be seen that k is a function of (i,j,m), k is a function that can be computed:

 k=f (i,j,m)=(j-1)*3+(i-1) (3)

When i=5,j=4 can be calculated to be k=(j-1)*3+(i-1)=(4-1)*3+(5-1)=13.You can see that the
element a5,4 in the matrix A is just in the position b13 in the single-vector B. So the conclusion 2-2 is
true.

When n=7,m=4,r=(n-1)/(m-1)=2, the corresponding uniform adjacent block diagonal matrix A
can be compressed into a single-vector storage space B.

The size of B can be obtained by calculation, it is (m2-1) ×r+1=(42-1) ×2+1=31.
As shown in figure 7.
For a data element ai,j in the uniform adjacent block diagonal matrix A, it can be compressed

storage into the single direction storage space B, if the element ai,j in A corresponding element is bk.
It can be seen that k is a function of (i,j,m), k is a function that can be computed:

 k=f (i,j,m)=(j-1)*4+(i-1) (4)

387

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44 45 46 47

54 55 56 57

64 65 66 67

74 75 76 77

11 21 31 41 47 57 67 77

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

...
B=

0 1 2 3 ... 27 28 29 30

a a a a

a a a a

a a a a

A a a a a a a a

a a a a

a a a a

a a a a

a a a a a a a a

 
 
 
 
 
 =
 
 
 
 
 
 

Fig.7 The results of compression storage at n=7, m=4,r=2

When i=5,j=7 can be calculated to be k=(j-1)*4+(i-1)=(7-1)*4+(5-1)=28.You can see that the
element a7,6 in the matrix A is just in the position b28 in the single-vector B. So the conclusion 2-3 is
true.

For a data element ai,j in the uniform block diagonal matrix A, it compressed storage into the
single-vector storage space B, if the element of ai,j in A corresponding element is bk. It can be seen
that k is a function of (i,j,m), the function that can be computed:

When m=5, k is a function of (i,j,m):

 k=f (i,j,m)=(j-1)×5+(i-1) (5)

Similarly, in the uniform adjacent block diagonal matrix A, each sub-block matrix is m-order
matrix. In addition to the elements of the sub-matrix on the diagonal, the rest are some constants.
The element ai,j in the sub-matrix is stored into a single direction now. It has stored j-1 complete
columns before the element ai,j stored, obviously. So the element number is m×(j-1). The number of
elements at this columns (j raw) before ai,j is (i-1).

Therefore, when the elements in the matrix A are stored in a single vector B, k is a function of
(i,j,m): k=(j-1)×m+(i-1).

Then the column priority address mapping function of the uniform adjacent block diagonal
matrix we can be obtained. (Formula 6):

k= f (i,j,m)= (j-1)×m+(i -1) (6)

5. Conclusion
In this paper, we studied the compressed storage of uniform adjacent block diagonal matrix for

the first time.
We obtained the row priority single-vector compressed storage address mapping function of the

uniform adjacent block diagonal matrix formula 1, k= f (i,j,m)= (i-1)×m+(j -1). We also obtained
the column priority single-vector compressed storage address mapping function of uniform adjacent
block diagonal matrix formula 2, k= f (i,j,m)= (j-1)×m+(i -1).

In an n-order matrix with r sub-matrices (m order), it is visible that the data elements are
compressed into a single-vector, and the compression ratio CR is:

CR=(1-((m2-1)*r+1)/n2))*100%

In a 100 order square matrix, there are 10 order square matrices whose number are 11, the
compression ratio is:

CR= (1-(((100-1)*11+1))/1002))*100%=89.1%

388

These conclusions have a high compression ratio, and we hope to the results provide the basis
theoretical for the data compression and storage of the algorithms design for data processing and
scientific computing.

Acknowledgement
This paper is a part of the project: Study on compressed storage of the matrixes (NO.2018A-105).

The project is financial supported by scientific research projects of colleges and universities in
Gansu Province.

If there are have any problems in this paper, please point out and correct the problems.

References
[1] Donald E.Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Programming.
Addison- Wesley, 1968.Third edition, 1997.
[2] Donald E.Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming.
Addison- Wesley,1969. Third edition, 1997.
[3] Donald E.Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming.
Addison- Wesley, 1973.Second edition,1998.
[4] Thomas H.Cormen, Charles E.Leiserson, Ronald L.Rivest, Clifford Stein. Introduction to
Algorithm, the third edition. The MIT Press,2009.
[5] Bondy J A and Marty U S R, Graph Theory with Applications, The Macmillan Press Ltd, New
York, 1976.
[6] Alfred V.Aho,John E.Hopcroft,and Jeffrey D.Ullman.Data structures and Algorithms. Addison-
Wesley, 1983.
[7] Ren Zhiguo, Data Structure(C Language Description), Science Press, Peking China, 2016.
[8] T.C.Hu and M.T.Shing. Computation of Matrix chian products.Part 1, SIAM Journal on
Computing, 1982 ,11(2):362-373.
[9] T.C.Hu and M.T.Shing. Computation of Matrix chian products.Part 2, SIAM Journal on
Computing, 1984,13(2):228-251.
[10] Mark Allen Weiss. Data Structures and Algorithm analysis in Java. Addison-Wesley, third
edition,2007.
[11] Don Coppersmith and Shmuel Winograd. Matrix Multiplication via arithmetic progression.
Journal of Symbolic Computation, 1990 ,9(3):251-280.
[12] Langr D, Tvrdik P. Evaluation Criteria for Sparse Matrix Storage Formats[J]. IEEE
Transactions on Parallel & Distributed Systems, 2016, 27(2):428-440.
[13] Ordonez C, Zhang Y, Cabrera W. The Gamma Matrix to Summarize Dense and Sparse Data
Sets for Big Data Analytics[J]. IEEE Transactions on Knowledge & Data Engineering,
2016 , 28 (7) :1905-1918
[14] Wilson Rodrí, guezCalderó. Fortran application to solve systems from NLA using compact
storage[J]. Dyna, 2015, 82(192):249-256.
[15] Nakatsukasa, Y., Soma, T., & Uschmajew, A. (2017). Finding a low-rank basis in a matrix
subspace. Mathematical Programming, 162(1-2), 325-361.
[16] Varajão, D., Rui, E. A., Miranda, L. M., & Lopes, J. A. P. (2018). Modulation strategy for a
single-stage bidirectional and isolated ac–dc matrix converter for energy storage systems. IEEE
Transactions on Industrial Electronics, 65(4), 3458-3468.

389

	1. Introduction
	2. The definition of uniform adjacent block diagonal matrix
	3. The row priority single-vector compression storage of uniform adjacent block diagonal matrix.
	4. The Column priority single-vector compression storage of uniform Adjacent block diagonal matrix.
	5. Conclusion
	Projects and support
	References

