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Abstract: Matrix is a mathematical object. We are not interested in data itself in the data structure, 
but how to store the elements in the matrix, so that various operations can be performed effectively. 
We often use a two-dimensional array to store the elements in the matrix sequentially. If adopt this 
method of storage, when there is large number of zero elements and have regular distribution a 
particular element will consume large amounts of storage unit. For high order matrix, the storage 
method is not only waste storage unit, but also takes a lot of time for invalid computation, it is 
obviously not desirable. In order to save the storage space, we need to compress storage for such 
matrix. The main purpose of the compressed storage is to make more of the same nonzero elements 
share the same storage unit according to the distribution of matrix element, while the zero elements 
don't allocate storage space. In this paper, we studied the row priority single-vector compressed 
storage and the column priority single-vector compressed storage of the uniform adjacent block 
diagonal matrix, and obtained the corresponding storage address mapping function, so as to help the 
scientific research worker. 

1. Introduction 
Matrix is a mathematical object, commonly used in scientific computing and engineering 

calculation. We are not interested in data itself in the data structure, but how to store the elements in 
the matrix, and make the various operations can run effectively. When programming in a high-level 
language, often use a two-dimensional array to store the elements in the matrix sequentially. If 
adopt this method of storage, we can random access each data element, and thus can easily realize 
operations of the matrix. But, when there is large number of zero elements in the matrix and have 
regular distribution, if still use a two-dimensional array to store the matrix, a particular element will 
consume a large of storage unit. For high order matrix, the storage method is not only waste storage 
unit, but also takes a lot of time for Invalid computation, it is obviously not desirable. In order to 
save the storage space, we need to compress storage for such matrix. The main purpose of the 
compressed storage is to make more of the same nonzero elements share the same storage unit 
according to the distribution of matrix element, while the zero elements don't allocate storage space. 
In this paper, we studied the uniform adjacent block diagonal matrix, and obtained the 
corresponding storage address mapping functions. The tags and terms used in the paper please 
reference [1-6].  

In recent years, relevant research has produced some new results [7-16]. In this paper, we studied 
the uniform adjacent block diagonal matrix, and obtained the row priority single-vector 
compression storage address functions of uniform adjacent block diagonal matrix, and also obtained 
the column priority single-vector compression storage address functions of uniform adjacent block 
diagonal matrix for the first time, so as to help the scientific research workers. 
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2. The definition of uniform adjacent block diagonal matrix 
This type of special matrix is often encountered in engineering calculations, as shown in Figure 1. 

If an n-order square matrix A satisfies the following conditions, it is called a uniform adjacent block 
diagonal matrix: 

1) Matrix A is an n-order square matrix. 
2) m is a positive integer, where m represents the order in the adjacency sub-matrix Λ  in square 

A. The adjacency sub-matrix: The bottom-right corner element of the i-th adjacency sub-matrix is 
the top-leftmost element of the i+1th adjacency sub-matrix, and they share one element. The range 
of i is: 1≤i＜(n-1)/(m-1) 

3) Each adjacent sub-matrixΛ  is a square matrix with m2 elements. The main diagonal of each 
adjacent sub-matrixΛ  is on the main diagonal of matrix A. 

4) When m=2, uniformly adjacent block diagonal matrix can also be considered as a banded 
matrix, n is a positive integer greater than 3.When m>2, m and n need to satisfy the relation:(n-1) 
mod (m-1)=0 

5) When r=(n-1)/(m-1), The sum of the elements in all adjacent submatrices is  (m2-1)×r+1. In 
addition to the (m2-1)×r+1 elements in the adjacency sub-matrix, the remaining elements in matrix 
A are all zero or the same constant 

The 6-order uniform block diagonal matrix and sub-matrix of m=2, as shown in figure 1. 
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Fig.1. 6 order uniform adjacent block diagonal matrix and sub-matrix of m=2 

3. The row priority single-vector compression storage of uniform adjacent block diagonal 
matrix. 

If the data elements of a uniform block diagonal matrix are compressed and stored in a single-
vector storage space B, the size of the single-vector B is (m2-1)×r+1.  

If the row priority storage is used for these r sub-matrices----when compressing and storing, the 
top-leftmost sub-matrix in square matrix A is stored at first and the sub-matrix at the lower right 
corner of the square A is stored at last. When storing each sub-matrix, the elements of the first row 
are stored first and the elements of the last row are stored last. For the elements in each row, the first 
element is stored at first, then store the second one... Finally, the last element in this row is stored.  

Then, when n=6, m=2, r=(n-1)/(m-1)=5, the uniform adjacent block diagonal matrix A can be 
compressed and stored in a single-vector storage space B. 

The size of B can be obtained by calculation, it is (m2-1) ×r+1=(22-1) ×5+1=16.As shown in 
figure 2. 
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Fig. 2. The results of compression storage at n=6,m=2,r=5 

For a data element ai,j in the uniform adjacent block diagonal matrix A, it can be compressed 
storage into the single direction storage space B, if the element ai,j in A corresponding element is bk. 
It can be seen that k is a function of (i,j,m), k is a function that can be computed: 

  k=f (i,j,m)=(i-1)*2+(j-1)                            (1-1) 
When i=5,j=6 can be calculated to be k=(i-1)*2+(j-1)=(5-1)*2+(6-1)=13.You can see that the 

element a5,6 in the matrix A is just in the position b13 in the single-vector B. So the conclusion 1-1 is 
true. 

When n=5, m=3, r=(n-1)/(m-1)=2, the corresponding uniform adjacent block diagonal matrix A 
can be compressed storage into a single-vector storage space B. 

The size of B can be obtained by calculation, it is (m2-1) ×r+1=(32-1) ×2+1=17. 
As shown in figure 3. 
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Fig.3. The results of compression storage at n=5, m=3,r=2 

For a data element ai,j in the uniform adjacent block diagonal matrix A, it can be compressed 
storage into the single direction storage space B, if the element ai,j in A corresponding element is bk. 
It can be seen that k is a function of (i,j,m), k is a function that can be computed: 

   k=f (i,j,m)=(i-1)*3+(j-1)                                (1-2) 
When i=5,j=4 can be calculated to be k=(i-1)*3+(j-1)=(5-1)*3+(4-1)=15.You can see that the 

element a5,4 in the matrix A is just in the position b15 in the single-vector B. So the conclusion 1-2 is 
true. 

Similarly, when n=7, m=4, r=(n-1)/(m-1)=2, the corresponding uniform adjacent block diagonal 
matrix A can be compressed into a single-vector storage space B.  

The size of B can be obtained by calculation, it is (m2-1) ×r+1=(42-1) ×2+1=31. 
As shown in figure 4. 
For a data element ai,j in the uniform adjacent block diagonal matrix A, it can be compressed 

storage into the single direction storage space B, if the element ai,j in A corresponding element is bk. 
It can be seen that k is a function of (i,j,m), k is a function that can be computed: 
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  k=f (i,j,m)=(i-1)*4+(j-1)                             (1-3) 
When i=7,j=6 can be calculated to be k=(i-1)*4+(j-1)=(7-1)*4+(6-1)=29.You can see that the 

element a7,6 in the matrix A is just in the position b29 in the single-vector B. So the conclusion 1-3 is 
true. 
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Fig.4. The results of compression storage at n=7, m=4,r=2 

In summary, for a data element ai,j in a uniform adjacent block diagonal matrix A, it compressed 
storage into the single direction storage space B, if the element ai,j in A corresponding element is bk. 
It can be seen that k is a function of (i,j,m). 

When m=2, k is a function of (i,j,m) , formula1-1 was obtained k=(i-1)×2+(j-1).When m=3, k is 
a function of (i,j,m) , formula1-2 was obtained k=(i-1)×3+(j-1).When m=4, k is a function of (i,j,m) , 
formula1-3 was obtained k=(i-1)×4+(j-1). 

In a uniform adjacent block diagonal matrix A, each sub-block matrix is an m-order matrix. In 
addition to the elements of the sub-matrix on the diagonal, the rest are some constants. The element 
ai,j in the sub-matrix is stored into a single direction B now. It has stored i-1 complete row’s 
elements before the element ai,j, obviously. So the elements number is m×(i-1). The number of 
elements at this column (j column) before ai,j is (j-1). 

Therefore, when the elements in the matrix A are stored in a single-vector, k is a function of 
(i,j,m): k=(i-1)×m+(j -1).  

Then the row priority address mapping function of the uniform adjacent block diagonal matrix 
we can be obtained. (formula 1):  

k= f (i,j,m)= (i-1)×m+(j -1)                           (1) 

4. The Column priority single-vector compression storage of uniform Adjacent block diagonal 
matrix. 

If the column priority storage is used for these r sub-matrices---- when compressing and storing, 
the top-leftmost sub-matrix in square matrix A is stored at first and the sub-matrix at the lower right 
corner of the square A is stored at last.  

When storing each sub-matrix, the elements of the first column are stored first and the elements 
of the last column are stored last. For the elements in each column, the first element is stored at first, 
then store the second one... Finally, the last element in this column is stored.  

Then, when n=6, m=2, the corresponding uniform adjacent block diagonal matrix A can be 
compressed and stored in the single-vector storage space B. As shown in figure 5. 

Similar to row priority compressed storage, in column priority storage, for a data element ai,j in 
uniform adjacent block diagonal matrix A, it compressed storage into the single-vector storage 
space B, if the element ai,j in A corresponding element is bk. It can be seen that k is a function of 
(i,j,m), k is a function that can be computed: 

k=f (i,j,m)=(j-1)×2+(i-1)                       (2) 
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Fig. 5. The results of compression storage at n=6,m=2 and r=5 

So when n=6 and m=3, the corresponding uniform block diagonal matrix A can be compressed 
into a single vector storage space B. As shown in figure 6. 
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Fig. 6. The results of compression storage at n=6, m=3 and r=2 

For a data element ai,j in the uniform adjacent block diagonal matrix A, it can be compressed 
storage into the single direction storage space B, if the element ai,j in A corresponding element is bk. 
It can be seen that k is a function of (i,j,m), k is a function that can be computed: 

   k=f (i,j,m)=(j-1)*3+(i-1)                            (3) 

When i=5,j=4 can be calculated to be k=(j-1)*3+(i-1)=(4-1)*3+(5-1)=13.You can see that the 
element a5,4 in the matrix A is just in the position b13 in the single-vector B. So the conclusion 2-2 is 
true. 

When n=7,m=4,r=(n-1)/(m-1)=2, the corresponding uniform adjacent block diagonal matrix A 
can be compressed into a single-vector storage space B.  

The size of B can be obtained by calculation, it is (m2-1) ×r+1=(42-1) ×2+1=31. 
As shown in figure 7. 
For a data element ai,j in the uniform adjacent block diagonal matrix A, it can be compressed 

storage into the single direction storage space B, if the element ai,j in A corresponding element is bk. 
It can be seen that k is a function of (i,j,m), k is a function that can be computed: 

  k=f (i,j,m)=(j-1)*4+(i-1)                  (4) 
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Fig.7 The results of compression storage at n=7, m=4,r=2 

When i=5,j=7 can be calculated to be k=(j-1)*4+(i-1)=(7-1)*4+(5-1)=28.You can see that the 
element a7,6 in the matrix A is just in the position b28 in the single-vector B. So the conclusion 2-3 is 
true. 

For a data element ai,j in the uniform block diagonal matrix A, it compressed storage into the 
single-vector storage space B, if the element of ai,j in A corresponding element is bk. It can be seen 
that k is a function of (i,j,m), the function that can be computed: 

When m=5, k is a function of (i,j,m):  

              k=f (i,j,m)=(j-1)×5+(i-1)           (5) 

Similarly, in the uniform adjacent block diagonal matrix A, each sub-block matrix is m-order 
matrix. In addition to the elements of the sub-matrix on the diagonal, the rest are some constants. 
The element ai,j in the sub-matrix is stored into a single direction now. It has stored j-1 complete 
columns before the element ai,j stored, obviously. So the element number is m×(j-1). The number of 
elements at this columns (j raw) before ai,j is (i-1). 

Therefore, when the elements in the matrix A are stored in a single vector B, k is a function of 
(i,j,m): k=(j-1)×m+(i-1).  

Then the column priority address mapping function of the uniform adjacent block diagonal 
matrix we can be obtained. (Formula 6):  

k= f (i,j,m)= (j-1)×m+(i -1)                          (6) 

5. Conclusion 
In this paper, we studied the compressed storage of uniform adjacent block diagonal matrix for 

the first time. 
We obtained the row priority single-vector compressed storage address mapping function of the 

uniform adjacent block diagonal matrix formula 1, k= f (i,j,m)= (i-1)×m+(j -1). We also obtained 
the column priority single-vector compressed storage address mapping function of uniform adjacent 
block diagonal matrix formula 2, k= f (i,j,m)= (j-1)×m+(i -1). 

In an n-order matrix with r sub-matrices (m order), it is visible that the data elements are 
compressed into a single-vector, and the compression ratio CR is: 

CR=(1-((m2-1)*r+1)/n2))*100% 

In a 100 order square matrix, there are 10 order square matrices whose number are 11, the 
compression ratio is: 

CR= (1-(((100-1)*11+1))/1002))*100%=89.1% 
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These conclusions have a high compression ratio, and we hope to the results provide the basis 
theoretical for the data compression and storage of the algorithms design for data processing and 
scientific computing. 
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